상세 컨텐츠

본문 제목

How to use 'pandas' package in python?

커리어리뷰

by 자연키 2023. 2. 20. 07:23

본문

Here's a brief overview of how to use pandas in Python:

 

  • Import pandas: To use pandas, you first need to import it into your Python script or Jupyter notebook. You can do this by using the following command: import pandas as pd. This will allow you to access all the functions and data structures provided by pandas, and you can refer to pandas as 'pd' in your code.
import pandas as pd
  • Create a DataFrame: The most commonly used data structure in pandas is the DataFrame, which is a two-dimensional table like structure with rows and columns. You can create a DataFrame from a CSV file, an Excel file, a SQL database, or from a Python dictionary or list. For example, to create a DataFrame from a CSV file, you can use the following command: df = pd.read_csv('file.csv').
df = pd.read_csv('file.csv')
  • Data manipulation: Once you have created a DataFrame, you can use pandas functions to manipulate the data. For example, you can select specific columns, filter rows based on certain criteria, group the data by a column, aggregate the data, and more. Some of the commonly used functions for data manipulation include df.head(), df.tail(), df.info(), df.describe(), df.groupby(), and df.apply().
df.head()
df.tail()
df.info()
df.describe()
df.groupby()
df.apply().
  • Data cleaning: Data cleaning is an important step in data analysis, and pandas provides several functions for handling missing data, duplicate data, and inconsistent data. For example, you can use the df.isnull(), df.drop_duplicates(), and df.replace() functions to handle missing data, duplicate data, and inconsistent data, respectively.
df.isnull()
df.drop_duplicates()
df.replace()
  • Data visualization: Once you have cleaned and manipulated your data, you can use pandas functions to visualize the data. For example, you can use the df.plot() function to create various types of plots such as line plots, bar plots, scatter plots, and more. You can also use other visualization libraries such as Matplotlib and Seaborn in conjunction with pandas.
df.plot()

 

These are just some of the basic steps involved in using pandas for data analysis and manipulation. Pandas provides a vast array of functions and tools for handling data, and it's important to explore the documentation and experiment with the functions to get a better understanding of how to use pandas effectively.

반응형

관련글 더보기

댓글 영역